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LETTER TO THE EDITOR 

A discrete vector spin model 
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Department of Physics, Bar-Ilan University, Ramat-Can, Israel 

Received 4 June 1985 

Abstract. A modification of the classical Heisenberg model is proposed in which the 
continuously rotating spin variables are replaced by spins which are only allowed an 
isotropically distributed discrete set of directions. The change is motivated by a need to 
simplify the calculations associated with Monte Carlo simulation of vector spin systems, 
a goal accomplished by the present model. An efficient table-based simulation technique 
is described and preliminary results for the critical region presented: various extensions 
of the model are discussed. 

The Ising model, because of its computational simplicity, has been extensively studied 
by Monte Carlo simulation with a view to understanding a variety of magnetic 
phenomena. A companion system, the classical Heisenberg model, despite its capacity 
for emulating a wider range of behavioural possibilities due to the additional freedom 
provided by the vector spins, has not been subject to the same degree of attention, 
principally because of its increased computational complexity. Evidence for the con- 
tinued interest in spin-model simulations derives from the appearance of a number of 
improved algorithms for Ising Monte Carlo computation (e.g. Jacobs and Rebbi 1981, 
Williams and Kalos 1984) and the construction of special-purpose processors (Hoog- 
land et a1 1983, Pearson et a1 1983); equivalent developments for the Heisenberg model 
have not occurred. 

The purpose of this letter is to introduce a new vector spin model having a great 
deal in common with the classical Heisenberg model, yet which is nevertheless only 
marginally more complex than the Ising model from the simulation point of view. In 
addition to describing the model, presenting results of a preliminary Monte Carlo 
analysis and comparing the efficiency of the computations required for the new model 
with those of the old, we outline the directions in which the model can be extended 
for use in studying other systems of current interest. 

The key step in simplifying the calculations associated with Monte Carlo simulation 
of the classical Heisenberg model is the replacement of the freely oriented spin vectors 
by vectors allowed a relatively large but finite set of directions: large so as to maintain 
the similarity with the continuous spin system, finite in order to facilitate replacement 
of the relatively heavy computations by references to tabulated values. In a sense the 
model is related to the original Heisenberg system in the same way that the two- 
dimensional clock model (e.g. Josi et a1 1977, Tobochnik 1982) is related to the planar 
rotator (or classical XU) model. 

The precise number of allowed spin directions is a matter of choice, the only 
requirement being that each direction is equivalent in the sense of having an identical 
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set of neighbour directions, The value 30 is used in the present work, the directions 
being those of the midpoints of the edges of the regular icosahedron (or, equivalently, 
the dodecahedron) from the middle of the polyhedron. Given the vertex coordinates 
of either of these Platonic solids (Coxeter 1963), the unit vectors to the edge midpoints 
are readily found to be (O,O, *l), (*& *7/2, *1/27) and their cyclic permutations, 
where T =  2 cos (7r/5) =$(5''2+ 1 )  is the familiar golden ratio. Each of the directions 
defined in this way has four equivalent adjacent directions. 

The simplest Hamiltonian based on this finite vector set is the analogue of the 
isotropic Heisenberg Hamiltonian, namely 

with the first sum being over all nearest-neighbour site pairs on the lattice; J is the 
exchange interaction parameter and H the applied field. Now both the spin product 
s, sl and the component of s, parallel to H (assuming H to lie along one of the 30 
spin directions) can take only nine possible values (0, *+, * l ,  * ~ / 2 ,  *1/27}, and it is 
this feature that leads to the greatly simplified Monte Carlo computations. 

Applied to a particular spin s, the steps of the typical Monte Carlo process are: 
(i) a random selection of a new trial spin direction s:; (ii) computing the energy change 

A E = - J (  S: - S, ) * - H * ( S: - S, ) (2) 

where the sum is over the neighbours of site i ;  (iii) computing the quantity w = 1 / ( A  + 1 )  
where 

A =exp(pAE)= 71(s:-E~)'Ts,SH.(s:-s , )  (3) 

and 7 = exp(pJ), 5 = exp(pH) ( p  = l / k B T ) ;  (iv) selection of a random number R E  
( 0 , l )  and replacement of s, by s i  on condition (Yang 1963) that R s w. Each spin is 
considered in turn, and a complete simulation run consists of many such passes over 
the entire lattice. 

The fact that s, - s, has only nine possible values allows the spin term in (3) to be 
rewritten as 

for the simple cubic lattice, where { u k }  are the values of s, s, and { nk} is the number 
of times each appears in the spin-product sum. The possible values of this sum are 
of the form m 1 / 2 +  m2/2.r, where lmll s 24 and lmzl s 12; there are a total of 1225 such 
values that can be indexed by means of the expression 25m, + m2, but because the { nk} 
are constrained (equation (4)),  not all will be realised. It follows from (3) that for 
H = 0 there will be a similar number of possible values of w,  while in a non-zero field 
there will be nine times as many. All that is needed in order to be able to use a table 
of precomputed values of w in the Monte Carlo process is a suitable indexing scheme 
based on the spin values; this we now describe. 

The spin vectors s, are replaced by numbers g,, 1 s g, s 30, that uniquely identify 
the spin directions. To enable the system to evolve gradually, the trial spin vector s: 
is selected at random from among the four directions adjacent to s, and the correspond- 
ing number is g : ;  this selection employs a table giving the four allowed gk for each 
g,. (The limitation to adjacent directions is not essential, and a slightly different 
approach allows an unrestricted choice among the 30 directions.) Now there are just 
3600 possible combinations of spin directions that go to make up the term ( s i  - s,) * s, 



Letter to the Editor L669 

which itself has only nine possible values (0, *($- 1/27), *1/27, *$, * l / ~ } ;  note that 
these values are all of the form m,/2+ m2/27. It is therefore possible to combine gi, 
g :  and gj to select a value vj from a table of 3600 entries; there are only nine distinct 
values in this table, each of the form 25m,+m2, and the selected vj corresponds to 
the term’s contribution to the sum Z nkvk. For the case of zero field the sum of six 
such vi for the neighbours of site i is used as an index for accessing the appropriate 
value of o, while for non-zero field an additional vj is included to account for the field 
contribution. In this manner, the not inconsiderable computation implicit in (3) is 
replaced by a few simple operations supporting the table lookup; a similar approach 
can also be used for evaluating the spin correlation functions. 

Justification for introducing the discrete vector model follows from a comparison 
of the computation speeds with that of the classical Heisenberg model simulated in 
the usual way (Binder 1976). Tests conducted using an IBM 3081 computer give a 
rate of approximately 60 ps per spin for the Heisenberg case, while for the new model 
the value falls to 6 ps, an order of magnitude improvement. Another comparison of 
interest is with a Heisenberg simulation on the ICL Distributed Array Processor (DAP) 
(Parkinson 1983), a set of 4096 parallel processing elements which has proved especially 
well adapted for Ising model studies (Reddaway et a1 1985). When the simulation is 
reorganised for DAP efficiency a value of 2 ~s per spin is obtained, with scope remaining 
for further optimisation; the DAP however is unable to take advantage of the table-based 
approach for the discrete model. The DAP therefore also remains the ideal choice of 
computer for the vector model, but it suffers from limited availability. Another 
possibility that merits consideration is the development of a special-purpose processor 
to handle the discrete model; the use of tables means that the implementation ought 
not to be significantly more complicated than for the Ising model. 

Several Monte Carlo runs were carried out for the discrete model at H=O and 
results for an N = 303 system are described below. The results are based on 26 000 
passes through the lattice at each of a sequence of decreasing temperatures, excluding 
the first 2000 passes to allows equilibration at each temperature. Due to the 30-fold 
ground-state degeneracy the direction of the usual order parameter (the magnetisation) 

si tends to drift at finite temperature, and this leads to a configuration average 
(Z s i )  = O  even though the spins may be aligned to a significant extent. A quantity 
which does reflect the presence of long-range order independent of the directional 
instability is the averaged magnitude of the magnetisation (lZ sil), and it is this quantity 
that is studied here; the susceptibility is computed from the fluctuations. 

Figures 1 and 2 show the magnetisation ( M )  and susceptibility (x) per spin over 
the temperature range considered. There is clear evidence in support of the expected 
second-order transition which occurs at a critical temperature T,== 1.5 (units of J ) .  
While the results for x are too scattered to permit meaningful exponent estimation, 
the graph of M is sufficiently smooth to warrant an examination of the exponent p 
defined by M 0: ( 1  - T /  T,)’, T 6  T,. A graph of log M against log ( 1  - T /  T,) should 
be linear near T, with gradient p. Since T, is not available to the required accuracy, 
a series of trial values increasing in steps of 0.005 were used; the best (i.e. the most 
linear) results were obtained for T, = 1.455, corresponding to p = 0.32. These values, 
while still subject to further refinement, are satisfyingly close to those of the classical 
Heisenberg model: series analysis of x (McKenzie et a1 1982) yields T, = 1.44, while 
the Monte Carlo estimate of /3 is 50.32 (Watson et a1 1969). 

A more detailed study of the model would, in addition to probing the critical 
region, consider the field dependence and examine the longitudinal and transverse 



L670 Letter to the Editor 

Figure 1. Magnetisation (as defined in the text) plotted as a function of temperature for 
the discrete vector model on a 303 lattice. 
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Figure 2. A plot of susceptibility as a function of temperature. 

spin correlations. Critical behaviour can also be studied by series methods (see Domb 
and Green 1974). High-temperature expansions can be developed using well known 
techniques; the susceptibility in particular can be treated by means of the x-’ star 
expansion (Rapaport 1974). Low-temperature expansions should also be feasible given 
the discrete nature of the excitations from the ground state. 

The model presented here is the simplest member of a family capable, in principle, 
of efficiently modelling a range of effects that are of considerable interest. Several 
examples and the necessary modifications follow. A random field model is obtained 
by replacing the constant applied field H by a local field variable hi at each site, where 
JhiJ is fixed and the direction picked at random from among the allowed spin directions. 
Essentially no changes to the algorithm are needed to handle this model. Directional 
anisotropy of the form ( L .  si)’ can be included together with the field term ( L  is 
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assumed to be parallel to one of the allowed spin directions) by simply altering the 
tables. Spin glasses and dilute magnets can also be treated; for example, a random 
* J  interaction can be incorporated through additional manipulation of the table indices 
that adds little to the computational effort. 

The DAP computations were carried out during a visit to the DAP Support Unit at 
Queen Mary College. Professor Dennis Parkinson is thanked for his hospitality and 
Kevin Smith for helpful discussion. 
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